Acteoside and its aglycones protect primary cultures of rat cortical cells from glutamate-induced excitotoxicity.
نویسندگان
چکیده
We have previously reported that acteoside isolated from the leaves of Callicarpa dichotoma has significant neuroprotective activity against glutamate-induced neurotoxicity in primary cultured rat cortical cells. To determine the essential structural moiety within this phenylethanoid glycoside needed to exert neuroprotective activity, acteoside was hydrolyzed with acid into its aglycones, caffeic acid and 3',4'-dihydroxylphenylethanol. Caffeic acid and 3',4'-dihydroxylphenylethanol also showed significant neuroprotective activities. Acteoside and its aglycones inhibited glutamate-induced intracellular Ca2+ influx resulting in overproduction of nitric oxide and reduced the formation of reactive oxygen species. These compounds preserved the mitochondrial membrane potential and the activities of antioxidative enzymes, such as superoxide dismutase, glutathione reductase and glutathione peroxidase reduced by glutamate. It was followed by the preservation of the level of glutathione and finally the inhibition of membrane lipid peroxidation.
منابع مشابه
Schizandrin protects primary cultures of rat cortical cells from glutamate-induced excitotoxicity.
The neuroprotective effect of schizandrin on the glutamate (Glu)-induced neuronal excitotoxicity and its potential mechanisms were investigated using primary cultures of rat cortical cells. After exposure of primary cultures of rat cortical cells to 10 microM Glu for 24 h, cortical cell cultures exhibited remarkable apoptotic death. Pretreatment of the cortical cell cultures with schizandrin (1...
متن کاملParacrine Neuroprotective Effects of Neural Stem Cells on Glutamate-Induced Cortical Neuronal Cell Excitotoxicity.
PURPOSE Glutamate is a major excitatory neurotransmitter in mammalian central nervous system. Excessive glutamate releasing overactivates its receptors and changes calcium homeostasis that in turn leads to a cascade of intracellular events causing neuronal degeneration. In current study, we used neural stem cells conditioned medium (NSCs-CM) to investigate its neuroprotective effects on glutama...
متن کاملRole of protein phosphatases in estrogen-mediated neuroprotection.
The signaling pathways that mediate neurodegeneration are complex and involve a balance between phosphorylation and dephosphorylation of signaling and structural proteins. We have shown previously that 17beta-estradiol and its analogs are potent neuroprotectants. The purpose of this study was to delineate the role of protein phosphatases (PPs) in estrogen neuroprotection against oxidative stres...
متن کاملMesenchymal Stem Cell Protection of Neurons against Glutamate Excitotoxicity Involves Reduction of NMDA-Triggered Calcium Responses and Surface GluR1, and Is Partly Mediated by TNF
Mesenchymal stem cells (MSC) provide therapeutic effects in experimental CNS disease models and show promise as cell-based therapies for humans, but their modes of action are not well understood. We previously show that MSC protect rodent neurons against glutamate excitotoxicity in vitro, and in vivo in an epilepsy model. Neuroprotection is associated with reduced NMDA glutamate receptor (NMDAR...
متن کاملNeurotensin enhances endogenous extracellular glutamate levels in primary cultures of rat cortical neurons: involvement of neurotensin receptor in NMDA induced excitotoxicity.
Primary cultures of cortical neurons were employed to investigate the modulatory effects of neurotensin on glutamate excitotoxicity and the possible neuroprotective actions of the neurotensin receptor antagonist SR48692. NT(1-13) and its biologically active fragment NT(8-13) at 10 nM (30 min) increased endogenous glutamate levels. The inactive fragment NT(1-7) (10-100 nM; 30 min) was ineffectiv...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Life sciences
دوره 79 7 شماره
صفحات -
تاریخ انتشار 2006